New Insights into the Role of Laser Power in the Droplet Transfer of Laser-Mig Hybrid Welding
Authors:
F Liu, B Yang, H Wang, C Tan, G Wang, B Chen
Publisher:
SSRN
Abstract:
The stability of droplet transfer plays an important role in the weld formation and spatters suppression during the laser-MIG hybrid welding. However, a debate exists on whether increased laser power improves or suppresses the droplet transfer. In this study, the role of laser heat source was investigated in a wide range of laser power. The droplet transfer was firstly improved by increasing laser power, and then it was suppressed once the laser power proceeded a critical value. The variation of droplet transfer frequency was determined by the competition between electromagnetic force and metal vapor reaction force. With increasing laser power, the arc conductivity was better and the arc current was improved, leading to increase of the electromagnetic force. As a result, the droplet transfer was promoted and the deposition rate of wire metal was increased. However, rapid increase of metal vapor reaction force was obtained when the laser power exceeded the critical value, producing a greater resistance on droplet transfer. Furthermore, the critical value of laser power was mainly determined by the characteristics of laser source, materials and laser-arc distance. This work will provide more guidance on matching processing parameters of the laser-MIG hybrid welding to improve weld formation and suppress spatters by stabilizing the droplet transfer.